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Abstract 

Existence of global constant mean curvature (CMC) foliations of constant curvature 3- 
dimensional maximal globally hyperbolic Lorentzian manifolds, containing a constant mean cur- 
vature hypersurface with genus(C) > I, is proved. Constant curvature 3-dimensional Lorentzian 
manifolds can be viewed as solutions to the 2 + 1 vacuum Einstein equations with a cosmological 
constant. The proof is based on the reduction of the corresponding Hamiltonian system in CMC 
gauge to a time-dependent Hamiltonian system on the cotangent bundle of Teichmiiller space. 
Estimates of the Dirichlet energy of the induced metric play an essential role in the proof. 

Subj. Chss.: General relativity 
1991 MSC: 83C50,53(350,30F99 
Keywords: Lorentzian manifolds; Foliations 

1. Introduction 

Lichnerowicz [2] used the conformal transformation properties of the scalar curvature 
to write the constraint equations on Cauchy data for the Einstein equations as a semilinear 
elliptic system. This important insight together with the fact that in the case of constant mean 
curvature (CMC) data the Hamiltonian and the momentum constraint equations decouple, 
leads to the conformal method for solving the constraint equations and to the conformal 
method of reduction of the Einstein equations in CMC gauge. 
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The Einstein equations in 3 + 1 dimensions on a spacetime of topology C x I for some 
interval I reduce, using the conformal method (ignoring technical difficulties) to a time- 
dependent Hamiltonian system on T*S(Z), where S(C) is the “conformal superspace” of 
,Z, i.e. the space of Riemannian metrics on C modulo conformal resealings and diffeomor- 
phisms. In the 2 + 1 -dimensional case with Z a compact oriented surface, the above ideas 
can be carried out in full detail [4]. 

In this paper we address the evolution problem for 2 + l-dimensional vacuum gravity 
with a cosmological constant in CMC gauge. We prove that all 2 + l-dimensional vac- 
uum spacetimes (X x I, jj) satisfying the vacuum Einstein equations with cosmological 
constant, 

which contain a CMC hypersurface are globally foliated by CMC hypersurfaces. In this 
case Eq. (31) below corresponds to the Lichnerowicz equation. 

Vacuum 2 + 1 -dimensional spacetimes with a cosmological constant are 3-dimensional 
Lorentzian spaceforms. The problem of classifying the 3-dimensional maximal globally 
hyperbolic Lorentzian spaces of constant curvature, and of topology C x [w was solved by 
Mess in [3] for A 5 0. The question of existence of a global CMC foliation was left open 
in this work. 

1.1. Overview 

This paper is organized as follows. In Section 2 we review some facts from Teichmiiller 
theory and define the Dirichlet energy E^. Here E^ is the form of the Dirichlet energy with 
fixed target space introduced by Tromba [5]. The fact that this is a proper function on 
Teichmuller space is a key ingredient in our argument. In Section 3 we introduce the 
2 + 1 Einstein evolution equations in CMC gauge and derive the Calabi-Simons iden- 
tity (20). Since we are dealing with constant curvature spacetimes the Riccati equation 
can be explicitly solved. This is done in Section 3.1, where for A 2 0 we use this to 
study the asymptotics of the mean curvature of the Gauss foliation. In Section 4 we state 
and prove the main results, Theorem 6 (global existence) and Corollary 7 (global CMC 
foliations). 

The conformal constraint equations are considered in Section 4.1. In Section 4.2, some 
estimates for the area and the Dirichlet energy are derived. An application of the Calabi- 
Simons identities, Lemma 3, for the second fundamental form together with the maximum 
principle yields pointwise bounds on the second fundamental form K in terms of the mean 
curvature t. This bound together with the Einstein evolution equations allows one to derive 
a differential inequality for the time development of the Dirichlet energy ,??(g(t)) of the 
metric g(t) which shows that E(g(t)) is finite for all r allowed by the constraint equations. 
Finally, in Section 4.3 the proof of the main theorem is carried out, using the bound on the 
Dirichlet energy derived in Section 4.2. 
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2. Teichmiiller space 

In this section we present some background material on Teichmiiller space. The main 
reference is the book by Tromba [5]. Fix a compact oriented 2-manifold C of genus > I. 
Let M denote the space of Coo metrics on C, let M-1 c M denote the space of metrics 
of constant scalar curvature - 1, let Do denote the group of Cm diffeomorphisms of C 
isotopic to the identity and let P be the group of positive C” functions on C. 

The scalar curvature function obeys the following transformation rule in 2 dimensions: 

R[e’*g] = eC2*(-2A,h + R[g]). (1) 

The equation 

A,i = i(R[gl + e2*) 

has a unique solution in case genus(C) > I and therefore we may construct a metric 
h = ezhg E M-1 conformal to g and with constant scalar curvature - 1. P acts on M by 
conformal resealing and M _ 1 is a global slice for the action of P. Thus 

M-I = M/P. 

Any Coo symmetric 2-tensor k can be decomposed uniquely as 

k = krr + fs + LR(Y), (2) 

where kn is transverse traceless, i.e. trRkn = 0, div,krr = 0, f E C”(C) and L,(Y) is 
the conformal Killing form for the vector field Y, i.e. the trace free part of Crg, 

L,(Y) = Gg - itr,:(Lrg)g 

The decomposition (2) is L2 orthogonal. In 2 dimensions div acting on traceless symmetric 
2-tensors is elliptic and by Riemann-Roth the dimension of the kernel has dimension 
6 genus(C) - 6 for genus(C) > 1. Further in 2 dimensions, transverse traceless is a 
conformally invariant property. We will use the notation S$-(T*C, h) for the space of 
TT-tensors w.r.t. h. 

Let k E ThM- 1. Then k is of the form kn + Lxh for some X. The TT-tensors provide 
a local slice for the action of DO on M-1. The action of 230 is proper so Teichmiiller space 
‘T(C) defined by 

I(C) = M-l/Do 

is a manifold of dimension 6 genus(C) - 6. 
M and M- 1 are Riemannian manifolds w.r.t. the L2-metric defined for h, k E TgM by 

I@, k)jg = s (h, k),tid2x 
c 

and i((., .)) restricted to M-1 induces a Riemannian structure (.. .)wp on I(C), the 
Weil-Peterson metric. 
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We need some basic facts about harmonic mappings. Let G be a fixed element in M-1 
andforg E M-I, S: C + Z,let 

I ..asaasfi 
e(S, g) = ?p,” axigG,p = ;(VS”, VS@),G,p 

and let E (S, g) be given by 

E(S, g) = 
s 

e(S, g)&!d2x. (3) 

.Z 

There is a unique map homotopic to the identity which minimizes E(S, g). This map, 
which we denote by S(g), is a harmonic map (C, g) + (C, G) and it can be proved that 

S(g) E Do. 
Let u : M-1 + M-1 be defined by 

a(g) = S(g)*g. (4) 

Since S(g) E DO the pushforward is well defined. By the uniqueness of S(g) we have 
u (f*g) = a(g) for any f E Do. Therefore u induces a map 

a:I(C)+M_,, (5) 

which is a global slice for the action of 220, see [5, Section 3.41. By a slight abuse of notation 
we will say that h E CJ if h E a(l(C)> c M-I. Given h E M-1 or g E M, we denote 
the corresponding classes in I(C) by [h] and [g]. 

We summarize the relevant facts in: 

Proposition 1 [5]. 
6) 

(ii) 
M _ 1 = Ml P and M _ 1 is a global slice for the action of P. 
I(C) = M_ 1 /‘DO and there is a global slice for the action of DO given by the 
map ‘T(C) --f M _ 1 induced by the dij%eomorphism invariant map M _ 1 -+ M _ 1 
given by c(g) = S(g),g, with S(g) E DO the harmonic minimizer of (3). I(Z) 
is a Coo manifold of dimension dim 7(Z) = 6 genus(C) - 6 difleomorphic to 
546 genus(C)-6 

(iii) The weak Riemannian metric on M _ 1 induces a metric (. , .) wp on I(C), the Weil- 
Peterson metric. I(C) is geodesically convex w.I: t. the Weil-Peterson metric but not 
complete. 

We define the Dirichlet energy of g E M-1 to be 

E(g) = E(S(g), g). (6) 

E(g) turns out to be conformally invariant and diffeomorphism invariant. By the conformal 
invariance, E(g) extends to a function on M which we denote by E^. Further, by the 
diffeomorphism invariance of E it defines a function E” on 7(E) which we again call the 
Dirichlet energy. 
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Proposition 2 [5]. 
(i) The Dirichlet energy E is a proper,function on 7(C). 

(ii) Let g E M and let S(g) E IDo be the harmonic map as in (6). For h E TX,(M). let &- 
denote the (1, I)-version of the trace,free part of h. Then 

D&)h = -; 
s 

(h”VS’. VS’),,&d’x. (7) 

c 

3. Vacuum 2 + 1 gravity 

Assume that C is a compact and orientable 2-dimensional manifold and let (C x f, j) be 
a maximal globally hyperbolic 2 + 1 spacetime, which solves the Einstein vacuum equations 
with cosmological constant A. We will denote the covariant derivative and curvature tensor 
defined w.r.t. i by V, l?, respectively. The field equations are 

&h = &lb. 

Note that Eq. (8) due to the 3-dimensionality of C x I is equivalent to 

&r,rl = ; A&&d - jndc!?bc) 

(8) 

i.e. (C x I. K) is a Lorentzian spaceform of sectional curvature $ A. 
We assume that the constant time hypersurfaces C, = C x {t] are spacelike with normal 

T and denote the induced metric by g. Define the lapse function N and shift vectorfield X by 

N = -(a,. T), X = X” a,<, 

Then we can write g in the form 

g = -N’ dt @ dt + &/,(dx’ t 

Let K denote the second fundamental 

= a, - N . T. 

X0 dt) @ (dx’ + Xb dt). 

Form, i.e. 

(9) 

IhI = -(Vl,T, eb) = (T, V&t,) 

and let 

7P = K;fb _ K”b, (10) 

then nfc” = &nNb . IS the canonically conjugate variable to g in the Hamiltonian formu- 

lation of Einsteins equations. Note that in [4] the notation rrab rather than rr“” was used. 
In the 2 + 1 case with cosmological constant A we have from the Gauss and Gauss- 

Codazzi equations 

(nsn12 - 1~1: + R = A. (I I) 

v,, xl”’ = 0. (12) 
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Using the second variation equations and the definition of N, X one arrives after a bit of 
calculation at the equations of motion which in terms of (g, ,TT) are 

&gob = 2N(&b - ttrgn)&b> + (CXg)nbt 

&nab = vQ,ObN - dN&,b - N$,b 

(13) 

+ N[~r$g,b - (trgn)2gnb + rr,c~~l + t~Xn),b. (14) 

Let r = trgz. We will in the following consider only the case of CMC data, with dr = 0. 
The lapse function corresponding to a CMC slicing satisfies 

- AN + (lrri; - A)N = 1. (15) 

By (2) and the momentum constraint equation (12), n satisfies 

Jr = ;rg+rrrr, Ilrli = ;r2 + l7r& (16) 

in the CMC case. 
In case C 2 S2, then I(C) is zero-dimensional and there are no nontrivial TT-tensors. 

It follows from this and the constraint equations (11) and (12) that for Z g S2, the 2 + 1 
vacuum Einstein equations have solutions only in case A > 0, r2 < 2A and the solution 
in this case is given by 

+22n 
&b(r) = &b(rO)t2 _ 2A. (17) 

This is the 2 + l-dimensional deSitter universe. 
If C g T2, any TT-tensor is covariant constant and the space of TT-tensors is 2- 

dimensional. The equations of motion can be explicitly solved. 
For genus(Z) > 1 we do not have an explicit solution of the equations of motion except 

in the trivial case 7r~~ = 0. In this case, the solutions of the field equations can be described 
as follows. If genus(Z) > 1 and A 1 0, the constraint equations imply r2 > 2A and we 
may therefore assume ru > &%. The evolution of trivial data is given by (17). We see that 
in the case when A 2 0, the trivial solutions undergo an infinite expansion as r \ &, 
collapse to a singularity as r + co, while, when A < 0, r runs from -co to +co and we 
have a “big bang” and a “big crunch”. In case A = 0, the trivial solutions correspond to 
quotients of the interior of a light-cone in the 2 + 1 -dimensional Minkowski space, while in 
case A < 0, the trivial solutions correspond to quotients of a maximal globally hyperbolic 
subset of the 2 + 1 -dimensional anti-desitter space. 

Lemma 3. The following identities holdfor K E S&.(T*C, g). 

vcK,b - vbKac = 0, (18) 

vCv,&b = R&t,, (19) 

$AIKI~ = 10~1: + ~1~1:. (20) 
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ProojI To prove the identity (18) note that if K E .S&( T* C, g) then in an ON frame 

KI I; I + K12;2 = 0, K21: I + K22:2 = 0. 

KII:I + K22:1 = 0, KII;~ + K22;2 = 0, 

197 

which after an elementary manipulation gives (18). Let K E .S&(T*C. g). A computation 
in an ON frame gives 

Kij:kk = Kik: jk 

Kij:kk = Kik;jk = Kik:kj f Rf.ijkKfk f R,f.kjkKij 

By (18) and K E S&(T*C. g), Kik;kj = Kkk:ij = 0 and using the fact that in 2 dimensions, 
the Riemann tensor is of the form 

gives (19). Finally, (20) is proved from (19) by a straightforward computation. 0 

Remark 4. Note that the identities (18) and (19) are special to 2 dimensions. Eq. (20) is 
one of the Calabi-Simons identities, analogs of this hold for Codazzi tensors in higher 
dimensions, and for higher covariant derivatives of K, see [ 11 and references therein. The 
above identity may also be proved by differentiating the 2-dimensional identity Rtr/, - 

;R~ah = 0 in the direction of a TT tensor. 

The Calabi-Simons identity enables us to apply the maximum principle to get pointwise 
estimates for ZTT and N. 

Lemma 5. Assume genus(C) > 1. Let (gab, ncrh) be CMC data with mean curvature 5, 
for 2 + 1 vacuum GR with cosmological constant A and let N be the lapse,function. Then 
r2/2 > A and 

t2-2A 
Ixl-rl; 5 2’ (21) 

1 2 
52 <N<p - 2A - - s2-2A’ (22) 

ProojI Let rrm be the TT part of rr and apply Lemma 3. The maximum principle and (20) 
implies that at a maximum of IrrnIg, 

O> R. 

Using (16) and the Hamiltonian constraint (11) proves (21). It follows that r2 2 211, but 
equality implies R = 0 which is ruled out by genus(C) > I. Similarly, applying the 
maximum principle using (1.5) proves (22). 0 

Note that in the case when A 2 0, the range of mean curvatures T is limited by 2A < 
r2 < 00. 
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3. I. Gauss coordinates 

Before studying the evolution in the CMC gauge, it is instructive to consider the geometry 
of the spacetime in Gauss coordinates. Due to the fact that (Z x I, g) has constant curvature, 
we can integrate the Riccati equation. 

Let f : C x [w+ + _E x I be the normal exponential map, defined by fS (x) = exp, (ST) 
and let F(s) be defined by 

F(s)X = &*X9 

where fS* denotes push forward under fs. Then F satisfies the Jacobi equations 

F+&F=Q, (23) 

where Rr isdefined by RrX = /?(X, T)T, i.e. in thecaseofa2+ l-dimensional spacetime 
of constant curvature $ A, we have 

Rr = +I. 

Let S be the Weingarten map given by SX = -VxT where T is the timelike normal to 
fs (Z). Then S = -P F-’ and S satisfies the Riccati equation 

s= s2+& (24) 

In the constant curvature case, Eq. (23) has with F(0) = I, k’(O) = -So, the solution 

F(s) = I - S&J for A = 0, (25) 

F’(s)=*cosh(gs)--gSusinh(gr), forA>O. 

F(s)=Icos[gs) -&Susin(@s), forA (0. 

(26) 

(27) 

Let genus(Z) > 1 and assume that (go, So) are the metric and Weingarten map of a 
hypersurface C, with CMC ru in a 2 + 1 vacuum spacetime with cosmological constant 
A. Recall that S is just the (I, I)-form of the second fundamental form K. It follows from 
(2 1) that in case A > 0, after a choice of time orientation, 

so i 
-ro+ +2A J 

2 
I < 0. 

In case A > 0 we find from (25) and (26) that the solution to the Jacobi equation (23) exists 
and is nondegenerate for all s > 0 and hence C, has no focal points in the expanding 
direction. A computation shows that 

lim tr S(s) = --a. 
S’oo 

Finally, we note that in case A > 0 we have causal geodesic completeness in the expand- 
ing direction. To see this, use that by global hyperbolicity and the fact that the time variable 
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s for the Gauss foliation is proper time, any point in C x I which is in the expanding 
direction w.r.t. C, is on one of the leaves in the Gauss foliation and hence cannot be an 
endpoint for an inextendible causal geodesic. 

4. Global existence 

We now state the main theorem. 

Theorem 6. Fix a compact oriented 2-man$Ad C of genus > 1. Let (C x I, jj) he (I 
globally hyperbolic spacetime solving the vacuum Einstein equations (8) with cosmologiccrl 
constant A, which is the maximal globally hyperbolic development of CMC data (g. n ) on 
C with mean curvature to. Jf A > 0, assume that to > a. Then the following is true: 

(i) 

(ii) 

(iii) 

The Einstein evolution equations with CMC time gauge and spatial gauge given by the 
slice o of Proposition 1 (ii) has solution,for all r allowed by the constraint equations. 
i.e. ,for 

Vs <5<co, A > 0. 

--oo<r<oo, A < 0. 

The area Area(Z. g(r)) of C w.rt. the induced metric g(t) at mean curvature time 5 
satisfies Area(C, g(s)) + 0 as r --+ fee and in the case A 2 0, Area(C. g(r)) + 
cc as 5 \ JGi. 
In ca,se A 2 0,for &5i < 5 < so, 

GRW) i Gg(so)) ( ;;J$z)a. 

In particulac,for A > 0, the Dirichlet energy I?&(S)) is boundedfor the evolution in 
the expanding direction t \ v%? and the class sf g( 5) stays in a compact subset of 

I(C). 

Given the global existence for the evolution in CMC time we are now able to prove that 
the spacetime is globally foliated by CMC hypersurfaces. 

Corollary 7. Let (C x I, j) be as in Theorem 6. Then (C x I, j) is globally,foliated b> 
CMC hypersugaces. 

Prooj Let C, denote a CMC hypersurface with mean curvature T as constructed in 
Theorem 6. First we consider the case when r + fco, i.e. the collapsing direction. By a 
choice of time orientation it is sufficient to consider the case ‘t ,P co. If we can show that the 
focal distance along future directed normal geodesics to the CMC hypersurface C, tends 
to 0 as t ,J 00 then it follows by global hyperbolicity that the CMC foliation constructed 
in Theorem 6 exhausts the spacetime in the collapsing direction. Let F be defined as in 
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Section 3.1 by solving the Jacobi equation w.r.t. future directed normal geodesics to C, 
for some large r. Focal points correspond precisely to zero eigenvalues of F. Using the 
explicit form of F given by (25)-(27) and the fact that at least one of the eigenvalues of the 
Weingarten map S of E, is larger than i to, one shows easily that the focal distance tends 
to zero as to 7 00. 

Next we consider the case A 2 0 and t \ a. Fix some rn satisfying the conditions 
of Theorem 6(i). Using (22) and the definition of the lapse function we see that the Lorentz 
distance from C, to any point in the past of C, will decrease to zero before t reaches 
a. Therefore the CMC foliation for a < t < rn exhausts the past of Zr,,. 0 

Remark 8. In the case A 5 0, the case when r --+ fee in the proof of Corollary 7 is 
covered by a standard argument which shows that in the case of a crushing singularity, the 
CMC hypersurfaces foliate a neighborhood of the singular boundary if the strong energy 
condition holds. The basic comparison argument used for the proof of this can easily be 
adapted to cover the present situation. 

4.1. The conformal constraint equations 

Here we review the conformal procedure for solving the constraint equations, which is an 
essential step in the reduction of vacuum 2 + 1 gravity to a Hamiltonian system on T*‘T( Z), 
the cotangent bundle of Teichmtiller space, see [4]. 

The natural phase space for relativity is T*M, the cotangent bundle of the space of 
metrics. As discussed above the fiber in T*M consists of contravariant symmetric 2-tensor 
densities. For simplicity of notation we will work with tensors here. 

Let C,,, denote the space of solutions of the constraint equations (11) and (12) over the 
slice cr given by (5), such that (g, n) E Cr., if and only if (g, n) solves the constraint 
equations, trRn = r and g = e2’h for h E CT. Then C,., inherits a symplectic structure 
from the L2 symplectic structure on T*M. 

We will construct a map 

X,, : T*I(-Q --f C,,,. 

Let h E M-1 and let o E S&.(T*C, h). Then, letting 

g = e2’h, (28) 

we also have w E S&(T*C, g) by the 2 dimensionality of C. From this we get that 
ab _ rrrr-e -4’.p$,. is in S.&(TE, g). 
We are interested in constructing a solution (g, ?r) to the constraint equations (11) and (12) 

with trg7r = t for t E R. Clearly n of the form 

n ab =$++;tg ab (2% 

will solve (12) and every solution is of this form. It remains to consider the Hamiltonian 
constraint (11) which can be written 

$2 - Irfl-rI; + R[g] = A. 
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From the conformal transformation property of nm we get 

h-rl~ = e-4AIp7TI~ 

and using Eqs. (28) and (1) we see that (11) takes the form 

A/,h = iR[h] + ie2*(t2 - 2A) - $e-2h]p7_r]i. 

(30) 

(31) 

Existence and uniqueness of solutions to (31) has been proved, see [4]. We now define the 
map Y,., Let (q, p) E T*l( C) be given. By Proposition 1 (ii) we may introduce global 
coordinates 

CF. a= I,... ,6 genus(C) - 6, 

on I(C). It is natural to view 7*7(C) as the pullback under (T of the TT part of the 
cotangent bundle of M-1. The space M-1 is a submanifold of S2(T*C) and therefore 
T&M _ I in a natural way consists of contravariant symmetric TT tensor densities. We write 
a general element as 

I& = Jj;Prr 

with pn E S&.(TC, h). Let h(q”) = o(q*), then 

ah,b a 
- = 0*-. 
aqa aqff 

We may now introduce coordinates in the fiber of T*l( C) by 

see [4]. 
Conversely. given (q, p) E T*7(a), with h = a(q), we can define p-rr by the 

conditions 

p” = s p$.$J7;d2x, cd= l... . ,6 genus(C) - 6. 

,Y 

Solve for h using (31) and define nn by (30). Finally, (R, r) are defined by g = e”h and 
TI is given by (29). Now we put 

Y,,,(q, PI = (8, n). (33) 

4.2. Estimates,for the evolution problem 

Let (s(t), n(t)) be a solution to the evolution problem in CMC gauge, ( 13) and ( 14) 
starting at ru, with lapse satisfying (15) and with shift vectorfield X chosen so that the 
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conformal metric h(r) E g for all t. Here h(r) is the unique element in M-1 in the P- 
orbit of g(s). See [4] for a discussion of the choice of X. The shift vector field is chosen as 
the solution of an elliptic system with coefficients in h and is therefore estimated in terms 
ofh. 

If A > 0, we assume to > 1/2n. By standard 
for this system, in particular there exist rmin < SO 
rmin < 5 < iTmax. 

theory we have short time existence 
< rmax so that we have solution for 

Lemma 9 (Area estimate). Let to, (g(t), n(t)), tmin, tmax be as above. The area of C 
w.~t. g is given by 

Area(C, g) = 
s 

,&d2x. 

c 

Then for r E (rrnin, tmax) 

(34) 

T; - 2A Area(C, g(t)) 

r2 ’ Area(E, g(q)) ’ 

‘12 
if 5 > ro, 

Area(Z, g(r)) ri - 2A 
’ Area(C, g(ro)) ’ ??%’ 

if r < ro 

(35) 

(36) 

ProoJ We compute a, Area( C, g). By assumption we are using CMC gauge, so tr,n = r. 
We compute 

aTA= $r,(&g)& 

= $trfi(-2N(gtrRn - n) + Lxg)& 

= (-Nr + divxX),&. 

Since C is compact, 

s divgX&d2x = 0 

c 

and hence 

a, Area(C, g) = - 
s 

Nr&d2x, 

c 

which using inequality (22) for the lapse N gives the differential inequality for the 
area 

2r r 
-~ < 3, log(Area(C, g)) i - r2 _ 2A. 

r2-2A - 

Solving this inequality gives the result, 0 
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Lemma 10 (Energy estimate). Let to, (g(t), n(t)), tmin. 7max be as above. 

(37) 

(38) 

ProojI By the diffeomorphism invariance of E^, DE(g)lxg = 0 and thus we have by (7), 
noting that the trace free part of -2N(trRrr - rr) is just 2Nnn, 

i@(g) = N(r&VS’, VS’),&d*x, 
s 
z 

which gives the estimate 

I&z(l:)l I max(NlrrrIR)E(g). 

Lemma 5 gives pointwise bounds on N and nrr and we get the following differential 
inequality for E^: 

z/z - 
l&Ek(r))l 5 JmEkw). 

Integrating this differential inequality completes the proof of the Lemma. 0 

4.3. Proef of Theorem 6 

The reduction of 2 + 1 gravity in the CMC gauge using the slice D yields a smooth time- 
dependent Hamiltonian system on T*l( C). First we prove that this has global existence 
in time. Then we reconstruct the solution curve in T’M, thus proving global existence for 
the original system. Since we are considering a smooth finite-dimensional time-dependent 
Hamiltonian system, we need only prove that the data do not blow up for r satisfying the 
conditions of(i). 

Let ru satisfying the conditions of(i) be given and let (q(r), p(t)) be a solution curve 

with (q(to),p(70)) = (qo, PO) andlet (g(t),n(t)) = Y,(q(7), p(s))bethecorresponding 

solution curve in T*M. From standard theory it follows that we have existence for some 
interval (tmin, tmax) containing to. 

From Lemma 10 we know that the Dirichlet energy E(q) is bounded for r E (tmin, rmax). 
By Proposition 2, the Dirichlet energy is a proper function on I(C) and therefore for such 
r, q(r) stays in a compact subset of 7(X). 

Now consider h(t) = a(q(r)). By the construction of the slice 0 we have under the 
above conditions on t uniform pointwise estimates for h(t). In the following we suppress 
reference to t. 
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Let g = e*‘h with h E M-1. Then by the considerations in Section 4.1 we have 
rrh 3rrr=e pn. -4h ab We estimate the coordinates in the fiber of T*7(Z) using (32) and the 

Holder inequality, 

where Ilahlaq* Ikmax is the maximum modulus w.r.t. h of the tensor tlh/L3qa. By con- 
struction this is uniformly bounded for r satisfying our assumptions. Further e*‘& = & 
so 

s e*‘&d*X = Area(C, g), 

c 

which is estimated in Lemma 9. It remains to consider the last factor. Note that, by the 
conformal transformation rules, 

e-*‘p$p$.h,,h~~& = ~~~~gacgbd~ = rJml;& 

Using (2 1) we now have the bound 

, max 

Referring again to the area estimate in Lemma 9 we find that the coordinates pa in the fiber 
of T*I(C) are bounded uniformly under the conditions on t. Therefore it follows that we 
can extend the interval of existence for the reduced system to the intervals claimed in (i). 

We have now proved global existence for the reduced version of 2 + I vacuum GR. It 
remains to reconstruct the solution curve. This is done using the map Y,,, . By construction 
this is a smooth map. The lapse and shift are governed by elliptic equations which satisfy 
uniform estimates for t satisfying the present assumptions. This finishes the proof of(i). 

Point (ii) of Theorem 6 follows from Lemma 9 and finally point (iii) of Theorem 6 is 
easily verified. 
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